Proteomic analysis of an extreme halophilic archaeon, Halobacterium sp. NRC-1.

نویسندگان

  • Young Ah Goo
  • Eugene C Yi
  • Nitin S Baliga
  • Weiguo A Tao
  • Min Pan
  • Ruedi Aebersold
  • David R Goodlett
  • Leroy Hood
  • Wailap V Ng
چکیده

Halobacterium sp. NRC-1 insoluble membrane and soluble cytoplasmic proteins were isolated by ultracentrifugation of whole cell lysate. Using an ion trap mass spectrometer equipped with a C18 trap electrospray ionization emitter/micro-liquid chromatography column, a number of trypsin-generated peptide tags from 426 unique proteins were identified. This represents approximately one-fifth of the theoretical proteome of Halobacterium. Of these, 232 proteins were found only in the soluble fraction, 165 were only in the insoluble membrane fraction, and 29 were in both fractions. There were 72 and 61% previously annotated proteins identified in the soluble and membrane protein fractions, respectively. Interestingly, 57 of previously unannotated proteins found only in Halobacterium NRC-1 were identified. Such proteins could be interesting targets for understanding unique physiology of Halobacterium NRC-1. A group of proteins involved in various metabolic pathways were identified among the expressed proteins, suggesting these pathways were active at the time the cells were collected. This data containing a list of expressed proteins, their cellular locations, and biological functions could be used in future studies to investigate the interaction of the genes and proteins in relation to genetic or environmental perturbations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Post-genomics of the model haloarchaeon Halobacterium sp. NRC-1

Halobacteriumsp. NRC-1 is an extremely halophilic archaeon that is easily cultured and genetically tractable. Since its genome sequence was completed in 2000, a combination of genetic, transcriptomic, proteomic, and bioinformatic approaches have provided insights into both its extremophilic lifestyle as well as fundamental cellular processes common to all life forms. Here, we review post-genomi...

متن کامل

The cobY gene of the archaeon Halobacterium sp. strain NRC-1 is required for de novo cobamide synthesis.

Genetic and nutritional analyses of mutants of the extremely halophilic archaeon Halobacterium sp. strain NRC-1 showed that open reading frame (ORF) Vng1581C encodes a protein with nucleoside triphosphate:adenosylcobinamide-phosphate nucleotidyltransferase enzyme activity. This activity was previously associated with the cobY gene of the methanogenic archaeon Methanobacterium thermoautotrophicu...

متن کامل

Dna Mismatch Repair and Response to Oxidative Stress in the Extremely Halophilic Archaeon Halobacterium Sp. Strain Nrc-1

Title of Document: DNA MISMATCH REPAIR AND RESPONSE TO OXIDATIVE STRESS IN THE EXTREMELY HALOPHILIC ARCHAEON HALOBACTERIUM SP. STRAIN NRC-1 Courtney Rae Busch, Doctor of Philosophy, 2008 Directed By: Assistant Professor Dr. Jocelyne DiRuggiero, Department of Cell Biology and Molecular Genetics Halobacterium is an extremely halophilic archaeon that has homologs of the key proteins, MutS and MutL...

متن کامل

A dual role of divalent metal ions in catalysis and folding of RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1

RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1 (Halo-RNH1) consists of an N-terminal domain with unknown function and a C-terminal RNase H domain. It is characterized by the high content of acidic residues on the protein surface. The far- and near-UV CD spectra of Halo-RNH1 suggested that Halo-RNH1 assumes a partially folded structure in the absence of salt and divalent metal...

متن کامل

Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence.

The genome of the halophilic archaeon Halobacterium sp. NRC-1 and predicted proteome have been analyzed by computational methods and reveal characteristics relevant to life in an extreme environment distinguished by hypersalinity and high solar radiation: (1) The proteome is highly acidic, with a median pI of 4.9 and mostly lacking basic proteins. This characteristic correlates with high surfac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular & cellular proteomics : MCP

دوره 2 8  شماره 

صفحات  -

تاریخ انتشار 2003